“Fifty Shades” of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties
نویسندگان
چکیده
Recent advances in the chemistry of melanins have begun to disclose a number of important structure-property-function relationships of crucial relevance to the biological role of human pigments, including skin (photo) protection and UV-susceptibility. Even slight variations in the monomer composition of black eumelanins and red pheomelanins have been shown to determine significant differences in light absorption, antioxidant, paramagnetic and redox behavior, particle morphology, surface properties, metal chelation and resistance to photo-oxidative wear-and-tear. These variations are primarily governed by the extent of decarboxylation at critical branching points of the eumelanin and pheomelanin pathways, namely the rearrangement of dopachrome to 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA), and the rearrangement of 5-S-cysteinyldopa o-quinoneimine to 1,4-benzothiazine (BTZ) and its 3-carboxylic acid (BTZCA). In eumelanins, the DHICA-to-DHI ratio markedly affects the overall antioxidant and paramagnetic properties of the resulting pigments. In particular, a higher content in DHICA decreases visible light absorption and paramagnetic response relative to DHI-based melanins, but markedly enhances antioxidant properties. In pheomelanins, likewise, BTZCA-related units, prevalently formed in the presence of zinc ions, appear to confer pronounced visible and ultraviolet A (UVA) absorption features, accounting for light-dependent reactive oxygen species (ROS) production, whereas non-carboxylated benzothiazine intermediates seem to be more effective in inducing ROS production by redox cycling mechanisms in the dark. The possible biological and functional significance of carboxyl retention in the eumelanin and pheomelanin pathways is discussed.
منابع مشابه
The red and the black.
"Pigmentation, which is primarily determined by the amount, the type, and the distribution of melanin, shows a remarkable diversity in human populations, and in this sense, it is an atypical trait."--E. J. Parra. Melanin is found throughout the human body, skin, eye, brain, hair, and inner ear, yet its molecular structure remains elusive. Researchers have characterized the molecular building bl...
متن کاملEffects of ultraviolet-visible irradiation in the presence of melanin isolated from human black or red hair upon Ehrlich ascites carcinoma cells.
The present study is an attempt to investigate the possibility that ultraviolet irradiation in the presence of pheomelanin may be more harmful to cells than the irradiation in the presence of eumelanin. The effects of UV-visible irradiation upon Ehrlich ascites carcinoma cells in the presence of the melanin isolated from human black hair (eumelanin) or from red hair (pheomelanin) were investiga...
متن کاملReverse Engineering Applied to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant Mechanism
Pheomelanin has been implicated in the increased susceptibility to UV-induced melanoma for people with light skin and red hair. Recent studies identified a UV-independent pathway to melanoma carcinogenesis and implicated pheomelanin's pro-oxidant properties that act through the generation of reactive oxygen species and/or the depletion of cellular antioxidants. Here, we applied an electrochemic...
متن کاملEumelanin and pheomelanin are predominant pigments in bumblebee (Apidae: Bombus) pubescence
BACKGROUND Bumblebees (Hymenoptera: Apidae: Bombus) are well known for their important inter- and intra-specific variation in hair (or pubescence) color patterns, but the chemical nature of the pigments associated with these patterns is not fully understood. For example, though melanization is believed to provide darker colors, it still unknown which types of melanin are responsible for each co...
متن کاملSpectrophotometric methods for quantifying pigmentation in human hair-influence of MC1R genotype and environment.
Eumelanin (brown/black melanin) and pheomelanin (red/yellow melanin) in human hair can be quantified using chemical methods or approximated using spectrophotometric methods. Chemical methods consume greater resources, making them less attractive for epidemiological studies. This investigation sought to identify the spectrophotometric measures that best explain the light-dark continuum of hair c...
متن کامل